GLUT Tutorial

Introduction

Setup
2

Initialization
3

Resizing the window
6

Animation
9

Input

Keyboard
10

Moving The Camera
15

Advanced Keyboard
20

Moving The Camera II
21

Mouse
25

Pop-up Menus

Basics
30

Sub Menus
33

Modifying a Menu
34

Swapping Menus
37

Fonts

Bitmap Fonts
38

Bitmaps and Ortho View
40

Stroke Fonts
42

Extras

Frames per Second
43

GLUT Game Mode
45

SubWindows

Creating and Destroying
51

Resizing
54

Rendering to Subwindows
56

Setup

GLUT stands for OpenGL Utility Toolkit. Mark J. Kilgard, to enable the construction of OpenGL applications that are truly window system independent, conceived the GLUT library. Thanks to GLUT, we can write applications without having to learn about X windows or Microsoft's own window system. Kilgard implemented the version for X windows, and later Nate Robins ported it to Microsoft Windows. Thanks to both, you did a great job.

In this tutorial I'll introduce you to the basics of building an application using GLUT. This tutorial won't introduce fancy visual effects in order to keep the code as simple as possible.

What you need

In order to write applications with GLUT you should have the latest version (at the time of writing this, I believe it is 3.7). The GLUT distribution comes with lots and lots of examples so after you read through the basics in here you'll have plenty of material to go on. Check out Mark Kilgard's GLUT page.

In order to write a C application using GLUT you'll need three files:
· glut.h - This is the file you'll have to include in your source code. The common place to put this file is in the gl folder which should be inside the include folder of your system.

· glut.lib (SGI version for Windows) and glut32.lib (Microsoft's version) - This file must be linked to your application so make sure to put it your lib folder.

· glut32.dll (Windows) and glut.dll (SGI version for Windows) - choose one according to the OpenGL you're using. If using Microsoft's version then you must choose glut32.dll. You should place the dll file in your system folder.

Setting up in Visual C/C++ 6.0

There are two options available for a project in Visual C/C++: console, and Win32. the first is the most common option. The application will have two windows: a console window and the OpenGL window. With Win32 it is still possible to build an application using GLUT without messing up with windows programming. All you have to do is to change one setting.
· Select project->settings from the main menu;
· Select the "Link" tab from the dialog box;
· Select "Output" from the "Category" combo box;
· In the "Entry-point symbol" textbox type "mainCRTStartup"
For an existing console project there is a simple way to transform it into a Win32 application, i.e. to get rid of the console window.
· Follow the steps above to add the entry-point symbol
· In the "Project options" textbox replace "subsystem:console" with "subsystem:windows"
Alternatively just add the following line to the beginning of your c code:

// #pragma comment(linker, "/subsystem:\"windows\" /entry:\"mainCRTStartup\"")

Note that the line is commented on purpose.
And thats all there is to it, now the application has no console window, just the OpenGL window.
In Visual C/C++ you'll have to do the following in order to link an application using GLUT:

· Select Project/Settings from the main menu.

· A dialog box appears, select the Link tab.

· Add the following files to the Object/library modules: opengl32.lib glut32.lib glu32.lib

Note: I've added glu32.lib and opengl32.lib as well. These are the two libraries for the standard OpenGL. GLU is an API that comes with the standard OpenGL distribution.

OK, so all is set, lets learn how to write GLUT applications
Initialization

In this section we're going to build the main function of our application. The main function will perform the required initializations and start the event processing loop. All the functions in GLUT have the prefix glut, and those which perform some kind of initialization have the prefix glutInit. The first thing you must do is call the function glutInit.

void glutInit(int argc, char **argv);
Parameters:

argc - A pointer to the unmodified argc variable from the main function.

argv - A pointer to the unmodified argv variable from the main function.

After initializing GLUT itself, we're going to define our window. First we establish the window's position, i.e. its top left corner. In order to do this we use the function glutInitWindowPosition.

void glutInitWindowPosition(int x, int y);
Parameters:

x - the number of pixels from the left of the screen. -1 is the default value, meaning it is up to the window manager to decide where the window will appear. If not using the default values then you should pick a positive value, preferably one that will fit in your screen.

y - the number of pixels from the top of the screen. The comments mentioned for the x parameter also apply in here.

Note that these parameters are only a suggestion to the window manager. The window returned may be in a different position, although if you choose them wisely you'll usually get what you want. Next we'll choose the window size. In order to do this we use the function glutInitWindowSize.

void glutInitWindowSize(int width, int height);
Parameters:

width - The width of the window

height - the height of the window

Again the values for width and height are only a suggestion, so avoid choosing negative values. Then you should define the display mode using the function glutInitDisplayMode.

void glutInitDisplayMode(unsigned int mode)
Parameters:

mode - specifies the display mode

The mode parameter is a Boolean combination (OR bit wise) of the possible predefined values in the GLUT library. You use mode to specify the color mode, and the number and type of buffers.

The predefined constants to specify the color model are:
· GLUT_RGBA or GLUT_RGB - selects a RGBA window. This is the default color mode.

· GLUT_INDEX - selects a color index mode.

The display mode also allows you to select either a single or double buffer window. The predefined constants for this are:
· GLUT_SINGLE - single buffer window

· GLUT_DOUBLE - double buffer window, required to have smooth animation.

There is more, you can specify if you want a window with a particular set of buffers. The most common are:
· GLUT_ACCUM - The accumulation buffer

· GLUT_STENCIL - The stencil buffer

· GLUT_DEPTH - The depth buffer

So, suppose you want a RGB window, with single buffering, and a depth buffer. All you have to do is to OR all the respective constants in order to create the required display mode.

...

glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE | GLUT DEPTH);

...

After all the above steps, the window can be created with glutCreateWindow.

int glutCreateWindow(char *title);
Parameters:

title - sets the window title

The return value of glutCreateWindow is the window identifier. You can use this identifier later within GLUT but this is outside of the scope of this section.
So now here is a little bit of code to perform all the initializations:

#include <gl/glut.h>

void main(int argc, char **argv) {

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DEPTH | GLUT_SINGLE | GLUT_RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

glutCreateWindow("3D Tech- GLUT Tutorial");

}

Note the include statement at the beginning of the code. The required include file comes with the GLUT distribution.

If you run this code, you'll obtain an empty black console window but no OpenGL window. Furthermore after a few seconds the window disappears. There are two things left to do before we are ready to render something. The first is to tell GLUT what is the function responsible for the rendering.

Lets create an example function for the rendering. The function presented bellow will clear the color buffer and draw a triangle.

...

void renderScene(void) {

glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_TRIANGLES);

glVertex3f(-0.5,-0.5,0.0);

glVertex3f(0.5,0.0,0.0);

glVertex3f(0.0,0.5,0.0);

glEnd();

glFlush();

}

The name of this function is up to you. However, now you must tell GLUT that it should use that function we just wrote for the rendering. This is called registering a callback. GLUT will call the function you supply whenever rendering is in order. For now lets tell GLUT that the function renderScene should be used whenever the window is reported by the window system to be damaged. GLUT has a function that takes as a parameter the name of the function to use when redrawing is needed. Note: the function you supply as a parameter is also called the first time the window is created. The syntax is as follows:

void glutDisplayFunc(void (*func)(void));
Parameters:

func - the name of the function to be called when the window needs to be redrawn. Note: it is illegal to pass NULL as the argument to this function.

One last thing missing, that is telling GLUT that we're ready to get in the application event processing loop. GLUT provides a function that gets the application in a never ending loop, always waiting for the next event to process. The GLUT function is glutMainLoop, and the syntax is as follows:

void glutMainLoop(void)

The code so far is presented bellow. Note that we've added an include statement in order to start using standard OpenGL functions, like glClear, glBegin, glVertex3f, and glEnd.

If you try to run this code you'll get a console window, and a few instants after the OpenGL window with a white triangle, hopefully at the desired position and with the desired size.

#include <gl/glut.h>

#include<gl/gl.h>

void renderScene(void) {

glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_TRIANGLES);

glVertex3f(-0.5,-0.5,0.0);

glVertex3f(0.5,0.0,0.0);

glVertex3f(0.0,0.5,0.0);

glEnd();

glFlush();

}

void main(int argc, char **argv) {

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DEPTH | GLUT_SINGLE | GLUT_RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

glutCreateWindow("3D Tech- GLUT Tutorial");

glutDisplayFunc(renderScene);

glutMainLoop();

}

Preparing the window for a reshape

Download the following VC project (glut0.zip) and run it. You'll see two windows: a console window and the OpenGL window. Now resize the window so that the height no longer matches the width. The triangle gets distorted. This occurs because you're not setting the perspective correctly. By default the perspective assumes that the ratio width/height is 1 and draws accordingly. So when the ratio is changed the perspective gets distorted. Therefore, every time the ratio changes the perspective needs to be recomputed.

GLUT provides a way to define which function should be called when the window is resized, i.e. to register a callback for recomputing the perspective. Furthermore, this function will also be called when the window is initially created so that even if you're initial window is not square things will look OK.

GLUT achieves this using the function glutReshapeFunc.

void glutReshapeFunc(void (*func)(int width, int height));
Parameters:

func - The name of the function that will be responsible for setting the correct perspective when the window changes size.

So the first thing that we must do is to go back to the main function we defined in the previous section and add a call to glutReshapeFunc. Lets call our own function to take care of window resizes changeSize. The code for the main function with the call to glutReshapeFunc added in is:

void main(int argc, char **argv) {

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DEPTH | GLUT_SINGLE | GLUT_RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

glutCreateWindow("3D Tech- GLUT Tutorial");

glutDisplayFunc(renderScene);

// Here is our new entry in the main function

glutReshapeFunc(changeSize);

glutMainLoop();

}

The next thing we need to do is to define the function that we'll take care of the perspective. As seen by the syntax of glutReshapeFunc, the changeSize function has two arguments, these are the new width and height, respectively, of the client area of the window, i.e. without the window decorations.

void changeSize(int w, int h) {

// Prevent a divide by zero, when window is too short

// (you cant make a window of zero width).

if(h == 0)

h = 1;

float ratio = 1.0* w / h;

// Reset the coordinate system before modifying

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

// Set the viewport to be the entire window

glViewport(0, 0, w, h);

// Set the correct perspective.

gluPerspective(45,ratio,1,1000);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(0.0,0.0,5.0,

 0.0,0.0,-1.0,

 0.0f,1.0f,0.0f);

}

A few functions we're introduced in this piece of code so let's go into a bit of detail in here before we all get lost. The first step was to compute the ratio between the width and the height. Note that in order for this to be done correctly we must take care of the case when the height of a window is actually zero to prevent a division by zero.

We then set the current matrix to be the projection matrix. This is the matrix that defines the viewing volume. We then load the identity matrix to initialize it. Afterwards we set the viewport to be the whole window with the function glViewport. You can try with different values to see what you come up with, the first two parameters are the top right corner, and the last two are the bottom left. Note that these coordinates are relative to the client area of the window, not the screen. If you do try with different values then don't forget that the ratio computed above should also use the new width and height values.

The gluPerspective function is part of another library for OpenGL, the OpenGL Utility Library, or GLU. GLU is a standard component of the implementation of OpenGL. The gluPerspective function establishes the perspective parameters. The first one defines the field of view angle in the yz plane, the ratio defines the relation between the width and height of the viewport. The last two parameters define the near and far clipping planes. Anything closer than the near value, or further away than the far value will be clipped away from the scene. Beware with these settings or you may end up not seeing anything at all.

Finally, setting the camera. First we set the GL_MODELVIEW as our current matrix. the modelview matrix is where we'll define both the camera settings and the modeling transformations. Before setting the camera it is always healthy to load the identity matrix. this avoids previous transformations to affect the camera settings. The gluLookAt function provides an easy and intuitive way to set the camera position and orientation. Basically it has three groups of parameters, each one is composed of 3 floating point values. The first three values indicate the camera position. The second set of values defines the point we're looking at. Actually it can be any point in our line of sight.The last group indicates the up vector, this is usually set to (0.0, 1.0, 0.0), meaning that the camera's is not tilted. If you want to tilt the camera just play with these values. For example, to see everything upside down try (0.0, -1.0, 0.0).

OK, here's the new VC project (glut1.zip), try playing with the window size and check if the proportions of our triangle remain constant. Furthermore, do play with the parameters in the new functions now introduced to get a grip of what is really happening.

Animation

OK, so far so good. We have an OpenGL window with a white triangle. Nothing very exciting, but hey, its a start. Now to complete this part of the GLUT tutorial lets have that triangle spinning.

Lets go back to the main function and add some extra stuff. First lets tell GLUT that we want a double buffer. Double buffering allows for smooth animation by keeping the drawing in a back buffer and swapping the back with the front buffer (the visible one) when the rendering is complete. Using double buffering prevents flickering.

glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);

The second thing we must do is to tell GLUT that when the application is idle the render function should be called. This causes GLUT to keep calling our rendering function therefore enabling animation. GLUT provides a function, glutIdleFunc, that lets you register a callback function to be called when the application is idle.

void glutIdleFunc(void (*func)(void));
Parameters:

func - The name of the function that will be called whenever the application is idle.

In our case, when the application is idle we want to call the previously defined function that does the actual rendering: renderScene. OK, so the main function now looks like this:

void main(int argc, char **argv) {

glutInit(&argc, argv);

// This is where we say that we want a double buffer

glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

glutCreateWindow("3D Tech- GLUT Tutorial");

glutDisplayFunc(renderScene);

// here is the setting of the idle function

glutIdleFunc(renderScene);

glutReshapeFunc(changeSize);

glutMainLoop();

}

Afterwards, we go and change the rendering itself. First lets declare a floating point variable angle, and initialize it to 0.0 . Then lets add the necessary stuff to the renderScene function.

float angle=0.0;

void renderScene(void) {

// notice that we're now clearing the depth buffer

// as well this is required, otherwise the depth buffer

// gets filled and nothing gets rendered.

// Try it out, remove the depth buffer part.

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// save the previous settings, in this case save

// we're refering to the camera settings.

glPushMatrix();

// Perform a rotation around the y axis (0,1,0)

// by the amount of degrees defined in the variable angle

glRotatef(angle,0.0,1.0,0.0);

glBegin(GL_TRIANGLES);

glVertex3f(-0.5,-0.5,0.0);

glVertex3f(0.5,0.0,0.0);

glVertex3f(0.0,0.5,0.0);

glEnd();

// discard the modelling transformations

// after this the matrix will have only the camera settings.

glPopMatrix();

// swapping the buffers causes the rendering above to be

// shown

glutSwapBuffers();

// finally increase the angle for the next frame

angle++;

}

The glutSwapBuffers function cause the front and back buffers to switch thereby showing what was previously drawn in the back buffer. The syntax is as follows:

void glutSwapBuffers();

There you have it, a spinning triangle You may download the VC project here (glut2.zip). Isn't it great? OK, ok...but I warned you, no fancy stuff in here, keeping the code to the minimum and focusing on GLUT is the way to learn this!

Keyboard

GLUT allows us to build applications that detect keyboard input using either the "normal" keys, or the special keys like F1 and Up. In this section we'll see how to detect which key was pressed, what further information we get from GLUT, and how to deal with that.

As you have probably noticed by now, whenever you want to take control of the processing of an event you have to tell GLUT in advance which function is going to perform such task. Up until now we used GLUT to tell the windows system which functions we wanted to do the rendering when the window needed to be repainted, which function to call when the system was idle, and which function to call when the window was resized.

Similarly we must do the same thing for keyboard events. We must notify the windows system, using GLUT, which function(s) will perform the required processing when a key is pressed. This procedure of notifying that when an event occurs we want to execute a particular function is also called "register a callback function".

GLUT provides two functions to register callbacks for keyboard events that occur when you press a key. The first one, glutKeyboardFunc, is used to tell the windows system which function we want to process the "normal" key events. By "normal" keys, we mean letters, numbers, anything that has an ASCII code. The syntax for this function is as follows:

void glutKeyboardFunc(void (*func) (unsigned char key, int x, int y));
Parameters:

func - The name of the function that will process the "normal" keyboard events. Passing NULL as an argument causes GLUT to ignore "normal" keys.

The function used as an argument to glutKeyboardFunc needs to have three arguments. The first indicates the ASCII code of the key pressed, the remaining two arguments provide the mouse position when the key is pressed. The mouse position is relative to the top left corner of the client area of the window.

A possible implementation for this function is to provide a way out of the application when the user presses the ESCAPE key. Note that when the glutMainLoop function was presented we mentioned that it was an infinite loop, i.e. it never returns. The only way out of this loop is to call the system exit function. So that's exactly what our function will do, when the user presses escape it calls the system exit function causing the application to terminate (remember to include stdlib.h in the source code). Next we present the function code:

void processNormalKeys(unsigned char key, int x, int y) {

if (key == 27)

exit(0);

}

Note that we are using exactly the same signature as the one specified in the syntax of glutKeyboardFunc. If you don't do this you'll get an error when compiling this in VC, and we don't want that, do we?

OK, ready to move on? Lets tackle the special keys now. GLUT provides the function glutSpecialFunc so that you can register your function for special key events processing. The syntax for this function is as follows:

void glutSpecialFunc(void (*func) (int key, int x, int y));
Parameters:

func - The name of the function that will process the special keyboard events. Passing NULL as an argument causes GLUT to ignore the special keys.

We're going to write a function that changes the color of our triangle when some of the special keys are pressed. This function will paint the triangle using red if F1 is pressed, green if F2 is pressed, and blue if F3 is pressed.

void processSpecialKeys(int key, int x, int y) {

switch(key) {

case GLUT_KEY_F1 :

red = 1.0;

green = 0.0;

blue = 0.0; break;

case GLUT_KEY_F2 :

red = 0.0;

green = 1.0;

blue = 0.0; break;

case GLUT_KEY_F3 :

red = 0.0;

green = 0.0;

blue = 1.0; break;

}

}

The GLUT_KEY_* are predefined constants in glut.h. The full set of constants is presented next:

GLUT_KEY_F1

F1 function key

GLUT_KEY_F2

F2 function key

GLUT_KEY_F3

F3 function key

GLUT_KEY_F4

F4 function key

GLUT_KEY_F5

F5 function key

GLUT_KEY_F6

F6 function key

GLUT_KEY_F7

F7 function key

GLUT_KEY_F8

F8 function key

GLUT_KEY_F9

F9 function key

GLUT_KEY_F10

F10 function key

GLUT_KEY_F11

F11 function key

GLUT_KEY_F12

F12 function key

GLUT_KEY_LEFT

Left function key

GLUT_KEY_RIGHT

Up function key

GLUT_KEY_UP

Right function key

GLUT_KEY_DOWN

Down function key

GLUT_KEY_PAGE_UP
Page Up function key

GLUT_KEY_PAGE_DOWN
Page Down function key

GLUT_KEY_HOME

Home function key

GLUT_KEY_END

End function key

GLUT_KEY_INSERT

Insert function key

In order for the code defined above on processSpecialKeys to compile we must add the declaration of the red, green, and blue variables to the beginning of our code. Furthermore, for the code to have the desired effect we must change the function responsible for the rendering, renderScene.

...

// all variables initialized to 1.0, meaning

// the triangle will initially be white

float red=1.0, blue=1.0, green=1.0;

void renderScene(void) {

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glPushMatrix();

glRotatef(angle,0.0,1.0,0.0);

// this is where we set the actual color

// glColor specifies the color of all further drawings

glColor3f(red,green,blue);

glBegin(GL_TRIANGLES);

glVertex3f(-0.5,-0.5,0.0);

glVertex3f(0.5,0.0,0.0);

glVertex3f(0.0,0.5,0.0);

glEnd();

glPopMatrix();

angle++;

glutSwapBuffers();

}

OK, now we're ready to tell GLUT that the functions we just defined are the ones that will process keyboard events. In other words it is time to call GLUT's glutKeyboardFunc and glutSpecialFunc. The call to these functions can be made anywhere, meaning that we may change the processing function for keyboard event processing at any time. However this is not an usual feature, so we'll place it on the main function. Next we present the new main function, with keyboard processing is presented (note that this function is based on the previous sections of this tutorial):

void main(int argc, char **argv) {

glutInit(&argc, argv);

// This is where we say that we want a double buffer

glutInitDisplayMode(GLUT_DEPTH|GLUT_DOUBLE|GLUT_RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

glutCreateWindow("3D Tech - GLUT Tutorial");

glutDisplayFunc(renderScene);

glutIdleFunc(renderScene);

glutReshapeFunc(changeSize);

// here are the new entries

glutKeyboardFunc(processNormalKeys);

glutSpecialFunc(processSpecialKeys);

glutMainLoop();

}

The Visual Basic project can be downloaded here (glut3.zip).

CTRL, ALT and SHIFT

Sometimes we may want to know if one modifier key, i.e. CTRL, ALT or SHIFT is being pressed. GLUT provides a function that detects if any modifier is being pressed. This function should only be called inside the functions that process keyboard or mouse input events. The syntax for this function is:

int glutGetModifiers(void);

The return value for this function is either one of three predefined constants (in glut.h), or any bitwise OR combination of them. The constants are:
· GLUT_ACTIVE_SHIFT - Set if either you press the SHIFT key, or Caps Lock is on. Note that if they are both on then the constant is not set.

· GLUT_ACTIVE_CTRL - Set if you press the CTRL key.

· GLUT_ACTIVE_ALT - Set if you press the ALT key.

Beware that the windows system may intercept some modifiers, no callback is generated in these cases. So lets extent our processNormalKeys a little bit to see how to handle these modifier keys. Suppose that you want the variable red to be 0.0 when the user presses r, and 1.0 when the user presses ALT + r. The following piece of code will do the trick:

void processNormalKeys(unsigned char key, int x, int y) {

if (key == 27)

exit(0);

else if (key=='r') {

int mod = glutGetModifiers();

if (mod == GLUT_ACTIVE_ALT)

red = 0.0;

else

red = 1.0;

}

}

Notice that if we wanted to do something if 'R' is pressed, then the following code will not work. This is because the key is 'R' and not 'r', therefore you should not use the SHIFT modifier to turn lowercase into uppercase or to achieve any symbol that has a defined ASCII code. You can use SHIFT with F1, though.

void processNormalKeys(unsigned char key, int x, int y) {

if (key == 27)

exit(0);

// this is incorrect if we're looking for an 'R'

else if (key=='r') {

int mod = glutGetModifiers();

if (mod == GLUT_ACTIVE_SHIFT)

...

}

}

One last thing, how do you detect CTRL+ALT+F1? In this case we must detect two modifiers at the same time. In order to achieve this we do a bitwise OR with the desired constants. The following piece of code only changes the color to red if combination CTRL+ALT+F1 is pressed.

void processSpecialKeys(int key, int x, int y) {

int mod;

switch(key) {

case GLUT_KEY_F1 :

 mod = glutGetModifiers();

 if (mod == (GLUT_ACTIVE_CTRL|GLUT_ACTIVE_ALT)) {

red = 1.0; green = 0.0; blue = 0.0;

 }

 break;

case GLUT_KEY_F2 :

 red = 0.0;

 green = 1.0;

 blue = 0.0; break;

case GLUT_KEY_F3 :

 red = 0.0;

 green = 0.0;

 blue = 1.0; break;

}

}

One final note about registering callbacks for keyboard and mouse events: when you register a callback for these events there maybe a performance penalty because the system is looking for these events. If you don't want to handle these events avoid registering callback functions to handle them.

Keyboard Example: Moving around the world

OK, so lets see a more exciting use for the keyboard using GLUT. In this section we're going to go through the code of an application that will draw a small world populated with snowman, and we're going to use the direction keys to move the camera in this world. The left and right keys will rotate the camera around the Y axis, i.e. in the XZ plane, whereas the up and down keys will move the camera forward and backwards in the current direction.

The code for this sample application is now presented with comments where appropriate. First lets deal with the initializations:

#include <math.h>

#include <gl\glut.h>

#include <gl\gl.h>

#include <gl\glu.h>

#include <stdlib.h>

static float angle=0.0,ratio;

static float x=0.0f,y=1.75f,z=5.0f;

static float lx=0.0f,ly=0.0f,lz=-1.0f;

static GLint snowman_display_list;

Note that we have included math.h, we'll need this for the angle of rotation. The meaning of the variables declared above we'll become clearer as we get along the code but meanwhile where goes a brief description:
· angle: the angle of rotation in the y axis. this variable will allow us to rotate the camera.

· x,y,z: The camera position

· lx,ly,lz: A vector defining our line of sight

· ratio: The window width/heith ratio

· snowman_display_list: the display list index for a single snowman

Note: if you're not confortable with display lists you can safely ignore that part because it will not affect the tutorial, however should you want to learn about display lists then I'll invite you to browse the tutorial on the subject.

Next we have a common function to deal with window resizing. The only difference is that the parameters of the gluLookAt function are now variables instead of fixed values. Just in case you haven't gone through the previous sections of the tutorial, and are wondering what is this function for, here goes a brief explanation. The gluLookAt function provides an easy and intuitive way to set the camera position and orientation. Basically it has three groups of parameters, each one is composed of 3 floating point values. The first three values indicate the camera position. The second set of values defines the point we're looking at. Actually it can be any point in our line of sight.The last group indicates the up vector, this is usually set to (0.0, 1.0, 0.0), meaning that the camera's is not tilted. If you want to tilt the camera just play with these values. For example, to see everything upside down try (0.0, -1.0, 0.0).

As mentioned before x, y, and z represent the camera position so these values correspond to the first vector in gluLookAt. The second set of parameters, the look at point, is computed by adding the vector which defines our line of sight to the camera position. Look At Point = Line Of Sight + Camera Position

void changeSize(int w, int h)

{

// Prevent a divide by zero, when window is too short

// (you cant make a window of zero width).

if(h == 0)

h = 1;

ratio = 1.0f * w / h;

// Reset the coordinate system before modifying

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

// Set the viewport to be the entire window

glViewport(0, 0, w, h);

// Set the clipping volume

gluPerspective(45,ratio,1,1000);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(x, y, z,

x + lx,y + ly,z + lz,

0.0f,1.0f,0.0f);

}

Next we have the initialization code for the rendering including the definition of the display list and the rendering itself. You can skip this bit if you want to and still follow the tutorial.

void drawSnowMan() {

glColor3f(1.0f, 1.0f, 1.0f);

// Draw Body

glTranslatef(0.0f ,0.75f, 0.0f);

glutSolidSphere(0.75f,20,20);

// Draw Head

glTranslatef(0.0f, 1.0f, 0.0f);

glutSolidSphere(0.25f,20,20);

// Draw Eyes

glPushMatrix();

glColor3f(0.0f,0.0f,0.0f);

glTranslatef(0.05f, 0.10f, 0.18f);

glutSolidSphere(0.05f,10,10);

glTranslatef(-0.1f, 0.0f, 0.0f);

glutSolidSphere(0.05f,10,10);

glPopMatrix();

// Draw Nose

glColor3f(1.0f, 0.5f , 0.5f);

glRotatef(0.0f,1.0f, 0.0f, 0.0f);

glutSolidCone(0.08f,0.5f,10,2);

}

GLuint createDL() {

GLuint snowManDL;

// Create the id for the list

snowManDL = glGenLists(1);

// start list

glNewList(snowManDL,GL_COMPILE);

// call the function that contains

// the rendering commands

drawSnowMan();

// endList

glEndList();

return(snowManDL);

}

void initScene() {

glEnable(GL_DEPTH_TEST);

snowman_display_list = createDL();

}

void renderScene(void) {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Draw ground

glColor3f(0.9f, 0.9f, 0.9f);

glBegin(GL_QUADS);

glVertex3f(-100.0f, 0.0f, -100.0f);

glVertex3f(-100.0f, 0.0f, 100.0f);

glVertex3f(100.0f, 0.0f, 100.0f);

glVertex3f(100.0f, 0.0f, -100.0f);

glEnd();

// Draw 36 SnowMen

for(int i = -3; i < 3; i++)

for(int j=-3; j < 3; j++) {

glPushMatrix();

glTranslatef(i*10.0,0,j * 10.0);

glCallList(snowman_display_list);;

glPopMatrix();

}

glutSwapBuffers();

}

Here goes the function that will process the special keys events. We're using the left and right keys to rotate the camera, i.e. to change the vector that defines the line of sight. The up and down keys are used to move along the current line of sight.

void inputKey(int key, int x, int y) {

switch (key) {

case GLUT_KEY_LEFT :

angle -= 0.01f;

orientMe(angle);break;

case GLUT_KEY_RIGHT :

angle +=0.01f;

orientMe(angle);break;

case GLUT_KEY_UP :

moveMeFlat(1);break;

case GLUT_KEY_DOWN :

moveMeFlat(-1);break;

}

}

When the user presses the left or right keys the variable angle is changed accordingly and the function orientMe is called with the new value. This function will rotate the camera accordingly. The function moveMeFlat is responsable for moving the camera in the plane XZ along the line of sight The parameter indicates the relative direction of the movement.

Here follows the function responsible for rotating the camera. This function receives an angle and it computes the appropriate values for the new x and z components of the line of sight vector. Note that we're only moving in the XZ plane, therefore we don't need to change the y coordinate of the line of sight vector. The new lx and lz are mapped onto a unitary circle on the XZ plane. Therefore, given a angle ang, the new values for lx and lz are:
· lx = sin(ang)
· lz = cos(ang)
Just like if we wanted to convert from Polar coordinates (ang,1) to Euclidean coordinates. Afterwards we set the new camera orientation. In order to do that we first speicify that we're working with the projection matrix. Then we reset the matrix to avoid accumulation with previous transformations. The gluPerspective sets the perspective parameters, and finally gluLookAt sets the camera orientation. Nota that the camera doesn't move, the camera position remains the same.

void orientMe(float ang) {

lx = sin(ang);

lz = -cos(ang);

glLoadIdentity();

gluLookAt(x, y, z,

 x + lx,y + ly,z + lz,

 0.0f,1.0f,0.0f);

}

This next function is responsible for the camera movement. We want to move the camera along the line of sight, i.e. the next camera position must be along the line of sight vector. In order to achieve this we're going to add a fraction of the line of sight vector to our current position, so the new values for x and z are:
· x = x + direction(lx)*fraction
· z = z + direction*(lz)*fraction
where direction is either -1 or 1 depending on wheter we want to move forwards, or backwards. The fraction is a possible speed implementation. We know that (lx,lz) is a unitary vector (as mentioned before, its a point in the unit circle), therefore if the fraction is kept constant then the speed will be kept constant as well. By increasing the fraction we're moving faster, i.e. we're moving farther in each frame.

The following steps are the same as in the orientMe function.

void moveMeFlat(int direction) {

x = x + direction*(lx)*0.1;

z = z + direction*(lz)*0.1;

glLoadIdentity();

gluLookAt(x, y, z,

 x + lx,y + ly,z + lz,

 0.0f,1.0f,0.0f);

}

The standard code for a main function using GLUT.

int main(int argc, char **argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(640,360);

glutCreateWindow("SnowMen from 3D-Tech");

initScene();

glutSpecialFunc(inputKey);

glutDisplayFunc(renderScene);

glutIdleFunc(renderScene);

glutReshapeFunc(changeSize);

glutMainLoop();

return(0);

}

You can download the VC 6.0 project here. Try fooling around with the camera settings functions.

Advanced Keyboard Features

In this section we're going to introduce four new functions to deal with the keyboard. These functions work hand in hand to release us from the auto repeat problem that causes a small delay when waiting for the autorepeat to be operated.

The first function we're going to present in here allows us to disable the keyboard repeat. The syntax is as follows:

int glutSetKeyRepeat(int repeatMode);
Parameters:

repeatMode - Enables, disables or restores the auto repeat mode. See bellow for possible values.

Possible values for repeatMode are as follows:
· GLUT_KEY_REPEAT_OFF - disable auto repeat mode
· GLUT_KEY_REPEAT_ON - enable auto repeat mode
· GLUT_KEY_REPEAT_DEFAULT - reset the auto repeat mode to its default state.
Note that this function works in a global basis, i.e. it will affect the repeat mode in all windows, not just the ones from our applications. So beware, when using this function to disable the auto repeat mode, it is convinient to reset it to its default state before terminating the application.

GLUT provides us with another approach, disabling callbacks for keyboard when the key repeat occurs. This allows us to safely ignore key repeats in our application without affecting the other apps. The function that provides this functionality is presented next:

int glutIgnoreKeyRepeat(int repeatMode);
Parameters:

repeatMode - zero enables auto-repeat, non-zero disables it.

In any case, we'll stop receiving callbacks when a key repeat occurs. However if you want to have an action performed while the key is being pressed, you'll need to know when the key is released. GLUT porivdes two functions that register callbacks when a key is released.

void glutKeyboardUpFunc(void (*func)(unsigned char key,int x,int y)); void glutSpecialUp(void (*func)(int key,int x, int y));
Parameters:

func - the name of the callback function.

The argument, a name of a function, will be the function that will handle these events. The parameters are the same as for when the user presses a key, so if a memory refresh is required look in the previous section.

In the next section we'll show how this feature can improve an application by revisiting the last example: moving around the world.

Keyboard Example: Moving around the world II

In this section the last example is revisited. This time we'll use the advanced keyboard features. The code that follows will have comments only in the new bits.

In the initialization section we have two new variables: deltaAngle and deltaMove. These variables control the rotation and movement of the camera respectively. When non-zero some camera action will occur, when zero the camera is still. These two variables take an initial zero value, meaning that initially the camera is still.

#include <math.h>

#include <gl\glut.h>

#include <gl\gl.h>

#include <gl\glu.h>

float angle=0.0,deltaAngle = 0.0,ratio;

float x=0.0f,y=1.75f,z=5.0f;

float lx=0.0f,ly=0.0f,lz=-1.0f;

GLint snowman_display_list;

int deltaMove = 0;

void changeSize(int w, int h)

{

// Prevent a divide by zero, when window is too short

// (you cant make a window of zero width).

if(h == 0)

h = 1;

ratio = 1.0f * w / h;

// Reset the coordinate system before modifying

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

// Set the viewport to be the entire window

glViewport(0, 0, w, h);

// Set the clipping volume

gluPerspective(45,ratio,1,1000);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(x, y, z,

 x + lx,y + ly,z + lz,

 0.0f,1.0f,0.0f);

}

void drawSnowMan() {

glColor3f(1.0f, 1.0f, 1.0f);

// Draw Body

glTranslatef(0.0f ,0.75f, 0.0f);

glutSolidSphere(0.75f,20,20);

// Draw Head

glTranslatef(0.0f, 1.0f, 0.0f);

glutSolidSphere(0.25f,20,20);

// Draw Eyes

glPushMatrix();

glColor3f(0.0f,0.0f,0.0f);

glTranslatef(0.05f, 0.10f, 0.18f);

glutSolidSphere(0.05f,10,10);

glTranslatef(-0.1f, 0.0f, 0.0f);

glutSolidSphere(0.05f,10,10);

glPopMatrix();

// Draw Nose

glColor3f(1.0f, 0.5f , 0.5f);

glRotatef(0.0f,1.0f, 0.0f, 0.0f);

glutSolidCone(0.08f,0.5f,10,2);

}

GLuint createDL() {

GLuint snowManDL;

// Create the id for the list

snowManDL = glGenLists(1);

// start list

glNewList(snowManDL,GL_COMPILE);

// call the function that contains

// the rendering commands

drawSnowMan();

// endList

glEndList();

return(snowManDL);

}

void initScene() {

glEnable(GL_DEPTH_TEST);

snowman_display_list = createDL();

}

void orientMe(float ang) {

lx = sin(ang);

lz = -cos(ang);

glLoadIdentity();

gluLookAt(x, y, z,

 x + lx,y + ly,z + lz,

 0.0f,1.0f,0.0f);

}

void moveMeFlat(int i) {

x = x + i*(lx)*0.1;

z = z + i*(lz)*0.1;

glLoadIdentity();

gluLookAt(x, y, z,

 x + lx,y + ly,z + lz,

 0.0f,1.0f,0.0f);

}

Here are some of the new bits. The function bellow starts by checking if any of the variables which define camera action are different from zero, and if so it will call the appropriate function to perform the required movement.

void renderScene(void) {

if (deltaMove)

moveMeFlat(deltaMove);

if (deltaAngle) {

angle += deltaAngle;

orientMe(angle);

}

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Draw ground

glColor3f(0.9f, 0.9f, 0.9f);

glBegin(GL_QUADS);

glVertex3f(-100.0f, 0.0f, -100.0f);

glVertex3f(-100.0f, 0.0f, 100.0f);

glVertex3f(100.0f, 0.0f, 100.0f);

glVertex3f(100.0f, 0.0f, -100.0f);

glEnd();

// Draw 36 SnowMen

for(int i = -3; i < 3; i++)

for(int j=-3; j < 3; j++) {

glPushMatrix();

glTranslatef(i*10.0,0,j * 10.0);

glCallList(snowman_display_list);;

glPopMatrix();

}

glutSwapBuffers();

}

The functions that follow are the ones which we've registered as callbacks for the special keys, and normal keys release, respectively.

void pressKey(int key, int x, int y) {

switch (key) {

case GLUT_KEY_LEFT :

deltaAngle = -0.01f;break;

case GLUT_KEY_RIGHT :

deltaAngle = 0.01f;break;

case GLUT_KEY_UP :

deltaMove = 1;break;

case GLUT_KEY_DOWN :

deltaMove = -1;break;

}

}

void releaseKey(int key, int x, int y) {

switch (key) {

case GLUT_KEY_LEFT :

case GLUT_KEY_RIGHT :

deltaAngle = 0.0f;break;

case GLUT_KEY_UP :

case GLUT_KEY_DOWN :

deltaMove = 0;break;

}

}

In the main function there are three new lines:

glutIgnoreKeyRepeat is called with a non-zero parameter to ask GLUT to stop reporting key repeats. Afterwards, both glutSpecialUpFunc and glutKeyboardUpFunc are called to register the callbacks.

int main(int argc, char **argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(640,360);

glutCreateWindow("SnowMen from 3D-Tech");

initScene();

glutIgnoreKeyRepeat(1);

glutSpecialFunc(pressKey);

glutSpecialUpFunc(releaseKey);

glutDisplayFunc(renderScene);

glutIdleFunc(renderScene);

glutReshapeFunc(changeSize);

glutMainLoop();

return(0);

}

You can download the VC 6.0 project here. Try fooling around with the camera settings functions.

Mouse

In the previous section we saw how to add interactivity to an OpenGL application using GLUT's Keyboard functionality. Now its time to explore the mouse. GLUTs mouse interface provides a lot of options for adding mouse interactivy, namely detecting clicks and mouse motion.

Detecting Mouse Clicks

As in the keyboard version, GLUT provides a way for you to register the function that will be responsable for processing events generated by mouse clicks. The name of this function is glutMouseFunc,and it is commonly called in the initialization phase of the application. The syntax is as follows:

void glutMouseFunction(void (*func)(int button, int state, int x, int y));
Parameters:

func - The name of the function that will handle mouse click events

As we can see from the signature of glutMouseFunction, the function that will handle the mouse click events must have four parameters. The first relates to which button was pressed, or released. This argument can have one of three values:
· GLUT_LEFT_BUTTON
· GLUT_MIDDLE_BUTTON
· GLUT_RIGHT_BUTTON
The second argument relates to the state of the button when the callback was generated, i.e. pressed or released. The possible values are:
· GLUT_DOWN
· GLUT_UP
When a callback is generated with the state GLUT_DOWN, the application can assume that a GLUT_UP will come afterwards even if the mouse moves outside the window. However if the application calls glutMouseFunction again with NULL as argument then GLUT will stop sending mouse state changes.

The remaining two parameters provide the (x,y) coordinates of the mouse relatively to the upper left corner of the client area of the window.

Detecting Motion

GLUT provides mouse motion detection capabilities to an application. There are two types of motion that GLUT handles: active and passive motion. Active motion occurs when the mouse is moved and a button is pressed. Passive motion is when the mouse is moving but no buttons are pressed. If an application is tracking motion, an event will be generated per frame during the period that the mouse is moving.

As usual you must register with GLUT the function that will be responsable for handling the motion events. GLUT allows us to specify two different functions: one for tracking passive motion, and another to track active motion.

The signatures for the GLUT functions are as follows:

void glutMotionFunc(void (*func) (int x,int y));
void glutPassiveMotionFunc(void (*func) (int x, int y));
Parameters:

func - the function that will be responsible for the respective type of motion.

The parameters for the motion processing function are the (x,y) coordinates of the mouse relatively to the upper left corner of the window's client area.

Detecting when the mouse enters or leaves the window

GLUT is also able to detect when the mouse leaves or enters the window region. A callback function can be registered to handle these two events. The GLUT function to register this callback is glutEntryFunc and the syntax is as follows:

void glutEntryfunc(void (*func)(int state));
Parameters:

func - the function that will handle these events.

The parameter of the function that will handle these events tells us if the mouse has entered of left the window region. GLUT defines two constants that can be used in the application:
· GLUT_LEFT

· GLUT_ENTERED

Note: This doesn't work exactly as it says in Microsoft Windows, this is because in Microsoft's OS the focus is changed with a mouse click. Although you can change this is your own system using some tools from Microsoft, others are likely to have the standard setting so its probably better if you don't use this feature in Microsoft Windows to detect when the mouse enters/leaves the window.
Putting it all together

The first thing we should do is to register with GLUT which function will be responsible for handling mouse events. Therefore we are going to rewrite our main function to include all the necessary callback's registrations. We are going to add all the functionality described above to our application to present a simple example from which you can learn the missing pieces, or just pick up the things that where not that clear in this tutorial.

void main(int argc, char **argv) {

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

glutCreateWindow("SnowMen");

glutDisplayFunc(renderScene);

glutIdleFunc(renderScene);

glutReshapeFunc(changeSize);

//adding here the mouse processing callbacks

glutMouseFunc(processMouse);

glutMotionFunc(processMouseActiveMotion);

glutPassiveMotionFunc(processMousePassiveMotion);

glutEntryFunc(processMouseEntry);

glutMainLoop();

}

OK, now lets have some fun! We're going to define the callback functions we registered to do some weird stuff. When a mouse button is pressed, and the ALT key is also pressed, we're going to change the triangle's color. So the left button makes the triangle red, the middle turns the triangle's color to green, whereas the right button makes a blue triangle. Next we present a function to do just this (note that the name of the function must be processMouse as this is the name registered in the main function:

void processMouse(int button, int state, int x, int y) {

specialKey = glutGetModifiers();

// if both a mouse button, and the ALT key, are pressed then

if ((state == GLUT_DOWN) &&

(specialKey == GLUT_ACTIVE_ALT)) {

// set the color to pure red for the left button

if (button == GLUT_LEFT_BUTTON) {

red = 1.0; green = 0.0; blue = 0.0;

}

// set the color to pure green for the middle button

else if (button == GLUT_MIDDLE_BUTTON) {

red = 0.0; green = 1.0; blue = 0.0;

}

// set the color to pure blue for the right button

else {

red = 0.0; green = 0.0; blue = 1.0;

}

}

}

Now lets have a more subtle color picking method. When a button is pressed, but no ALT key, we're going to set blue to 0.0, and let the red and green components be dependent upon the mouse position on the window's client area. The function bellow does just this:

void processMouseActiveMotion(int x, int y) {

// the ALT key was used in the previous function

if (specialKey != GLUT_ACTIVE_ALT) {

// setting red to be relative to the mouse

// position inside the window

if (x < 0)

red = 0.0;

else if (x > width)

red = 1.0;

else

red = ((float) x)/height;

// setting green to be relative to the mouse

// position inside the window

if (y < 0)

green = 0.0;

else if (y > width)

green = 1.0;

else

green = ((float) y)/height;

// removing the blue component.

blue = 0.0;

}

}

It's time to add some action to passive motion. When the SHIFT key is pressed, the mouse will have a rotation in the X axis relative to the mouse position in the x window coordinate. We had to change slightly the renderScene function to do this, so here goes the new renderScene:

float angleX = 0.0;

...

void renderScene(void) {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();

glRotatef(angle,0.0,1.0,0.0);

// This is the line we added for the

// rotation on the X axis;

glRotatef(angleX,1.0,0.0,0.0);

glColor3f(red,green,blue);

glBegin(GL_TRIANGLES);

glVertex3f(-0.5,-0.5,0.0);

glVertex3f(0.5,0.0,0.0);

glVertex3f(0.0,0.5,0.0);

glEnd();

glPopMatrix();

angle++;

glutSwapBuffers();

}

Now for the function that will process passive motion events. This function will change the value of angleX relatively to the mouse x coordinate value.

void processMousePassiveMotion(int x, int y) {

// User must press the SHIFT key to change the

// rotation in the X axis

if (specialKey != GLUT_ACTIVE_SHIFT) {

// setting the angle to be relative to the mouse

// position inside the window

if (x < 0)

angleX = 0.0;

else if (x > width)

angleX = 180.0;

else

angleX = 180.0 * ((float) x)/height;

}

}

Finally, when the mouse leaves the window we will stop the animation. In order to do this we have to change the renderScene function again. It is a small change but here goes the renderScene function again.

// initially define the increase of the angle by 1.0;

float deltaAngle = 1.0;

...

void renderScene(void) {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();

glRotatef(angle,0.0,1.0,0.0);

glRotatef(angleX,1.0,0.0,0.0);

glColor3f(red,green,blue);

glBegin(GL_TRIANGLES);

glVertex3f(-0.5,-0.5,0.0);

glVertex3f(0.5,0.0,0.0);

glVertex3f(0.0,0.5,0.0);

glEnd();

glPopMatrix();

// this is the new line

// previously it was: angle++;

angle+=deltaAngle;

glutSwapBuffers();

}

The processMouseEntry is the last function. As mentioned before, this doesn't work well in Microsoft Windows, compile this in Linux and it should work.

void processMouseEntry(int state) {

if (state == GLUT_LEFT)

deltaAngle = 0.0;

else

deltaAngle = 1.0;

}

The Visual C Project is available for download (glut5.zip).

Basics of Pop-up Menus

Pop-up menus are also a part of GLUT. Although not all the features of the Pop-up menus usually found in windows systems are implemented, this part of GLUT does a great job. Adding menus to an application provides an easier way to interact and select options than the keyboard, avoiding having to remember all those keys.

The first thing we must do is to create a menu. GLUT's function glutCreateMenu as the following syntax:

int glutCreateMenu(void (*func)(int value));
Parameters:

func - the function that will handle the menu events for the newly created menu.

The return value for this function is the menu identifier.

We can have as many menus as we want in our application. And for each menu a callback function is specified, although we can specify the same function for all our menus. Next we add some entries to the menu. The function to do this is glutAddMenuEntry.

void glutAddMenuEntry(char *name, int value);
Parameters:

name - the string that will show up in the menu.

value - this is the value that will be the returned to the callback function when the menu entry is selected.

This function appends the entry to the previously added entries, i.e. to the bottom of the menu. In GLUT there is no function to add an entry to the middle of the menu. Remember that GLUT doesn't pretend to be a complete API to replace the native windows API. GLUT is designed to make our lives easier when designing prototypes and it does an excellent job at that.

OK, so now you have a pop-up menu, but there's one last thing we must do: attach the menu to a mouse button, that is we must specify when the pop-up menu will appear. Using GLUT you can cause the menu to appear when a mouse button is pressed. The function to establish this relationship is glutAttachMenu.

void glutAttachMenu(int button);

Parameters:

button - an integer that specifies which button the menu will be attached to.

The button should have one of the following values:
· GLUT_LEFT_BUTTON
· GLUT_MIDDLE_BUTTON
· GLUT_RIGHT_BUTTON
So here is a function that exemplifies the usage of all the above functions.

...

#define RED 1

#define GREEN 2

#define BLUE 3

#define WHITE 4

...

void createGLUTMenus() {

int menu;

// create the menu and

// tell glut that "processMenuEvents" will

// handle the events

menu = glutCreateMenu(processMenuEvents);

//add entries to our menu

glutAddMenuEntry("Red",RED);

glutAddMenuEntry("Blue",BLUE);

glutAddMenuEntry("Green",GREEN);

glutAddMenuEntry("White",WHITE);

// attach the menu to the right button

glutAttachMenu(GLUT_RIGHT_BUTTON);

}

Note that RED, BLUE, GREEN, and WHITE must be defined integers in the applicationOne other thing, you should define a different value for each option, otherwise you won't be able to diferentiate between the menu items.

Now we'll write the function to process the menu events. As you probably guessed by now, we're going to set the color of the triangle using our menu. Note that our function must be called processMenuEvents, thats the name we provided when we created the menu in the function above. Furthermore, looking at the syntax of glutCreateMenu we know that it will have a parameter representing the selected menu item.

void processMenuEvents(int option) {

switch (option) {

case RED :

red = 1.0;

green = 0.0;

blue = 0.0; break;

case GREEN :

red = 0.0;

green = 1.0;

blue = 0.0; break;

case BLUE :

red = 0.0;

green = 0.0;

blue = 1.0; break;

case WHITE :

red = 1.0;

green = 1.0;

blue = 1.0; break;

}

}

The only thing left to do is to add a call to our function createGLUTMenus in our main function. The following code presents the new main function.

void main(int argc, char **argv) {

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

glutCreateWindow("SnowMen");

glutDisplayFunc(renderScene);

glutIdleFunc(renderScene);

glutReshapeFunc(changeSize);

//call our function to create the menu

createGLUTMenus();

glutMainLoop();

}

The Visual C project, including source code as usual can be downloaded here (glut7.zip).

Before we end this introduction to glut pop-up menus, we're going to look at two more functions. The first one allows you to break the relationship between a mouse button and a menu. Previously we attached the menu to a mouse button using the glut's function glutAttachMenu. In some applications it may be usefull to break this association, i.e. when the user presses the mouse the menu no longer appears. In GLUT this is done with the function glutDetachMenu. This function causes GLUT to stop providing a menu when the mouse button is pressed. The syntax is as follows:

void glutDetachMenu(int button);

Parameters:

button - the button to detach

The button parameter takes the same values as for the glutAttachMenu. So in our previous example, if we want to free the mouse button, we could write:

...

glutDetachMenu(GLUT_RIGHT_BUTTON);

...

And finally, if we want to recover the resources used by the menu then we can destroy it. The GLUT function to do this is glutDestroyMenu and it has the following syntax:

void glutDestroyMenu(int menuIdentifier);
Parameters:

menuIdentifier - this is the id of the menu to destroy. It must be the same value as the id returned by the function glutCreateMenu.

So this is it, you now know the basics of building menus with GLUT. Next we'll explore more features of the pop-up menus.
Sub Menus

In the previous section we saw how to build a simple menu, and process the events generated by a user selection. Now we're going to see how to add a cascade submenu. A submenu is created with the same function as a menu. Therefore we use the function glutCreateMenu, see the previous section, to create submenus as well as menus. Then we must add the submenu as an entry to the menu. This is done in GLUT using glutAddSubMenu.

void glutAddSubMenu(char *entryName, int menuIndex);
Parameters:

entryName - The name of the submenu entry in the menu

menuIndex - The index of the submenu, this is the value that we get as a return value when calling glutCreateMenu for the submenu.

This function adds an entry to the end of the menu. When selected, the new entry will open a submenu. The following piece of code illustrates the usage of the above function:

void createGLUTMenus() {

int menu,submenu;

submenu = glutCreateMenu(processMenuEvents);

glutAddMenuEntry("Red",RED);

glutAddMenuEntry("Blue",BLUE);

glutAddMenuEntry("Green",GREEN);

menu = glutCreateMenu(processMenuEvents);

glutAddMenuEntry("White",WHITE);

glutAddSubMenu("RGB Menu",submenu);

glutAttachMenu(GLUT_RIGHT_BUTTON);

}

Using the code above, when the user pressed the right mouse button a menu with two options would be presented: "White" and "RGB Menu". Pressing on "RGB Menu", a submenu appears with three items: "Red", "Green", and "Blue".

Note that, in this case, the function to process the menu events is the same for both the menu and the submenu. It is up to the application designer to decide that. GLUT doesn't care whatever way you choose, as long as you're consistent. The source code for this project is glut8.zip.

Modifying a Menu

In certain situations a change of a menu entry may be desirable. GLUT allows us to change and delete menu entries. To alter a menu entry use:

void glutChangeToMenuEntry(int entry, char *name, int value);
Parameters:

entry - the index of the entry, this must be between 1 and the total number of entries

name - the name of the new entry

value - The value that will be return to the callback function when the entry is selected.

void glutChangeToSubMenu(int entry, char *name, int menu);
Parameters:

entry - the index of the entry, this must be between 1 and the total number of entries

name - the name of the new entry

menu - The menu index to be used.

Note: This function appears to have some problems in Microsoft Windows. I assume that this is a portability issue. When one changes a sub menu twice it doesn't work, and it keeps the first change.

To following function deletes an item.

void glutRemoveMenuItem(int entry);
Parameters:

entry - the index of the entry, this must be between 1 and the total number of entries

One last thing, you can query at any time the number of items of the current menu with glutGet. The next example shows an example of changing a menu:

void processMenuEvents(int option) {

red = 0.0;

green = 0.0;

blue = 0.0;

switch (option) {

case RED : red = 1.0; break;

case GREEN : green = 1.0; break;

case BLUE : blue = 1.0; break;

case WHITE : red = 1.0;

green = 1.0;

blue = 1.0; break;

}

}

void processKeys(unsigned char c, int x, int y) {

int num = glutGet(GLUT_MENU_NUM_ITEMS);

switch (c) {

case 'a':

glutChangeToMenuEntry(1,"Blue",BLUE);

glutChangeToMenuEntry(3,"Red",RED);

break;

case 'b':

glutChangeToMenuEntry(3,"Blue",BLUE);

glutChangeToMenuEntry(1,"Red",RED);

break;

case 'c':

if (num > 3)

glutRemoveMenuItem(num);

break;

case 'd': if (num == 3)

glutAddMenuEntry("White",WHITE);

break;

}

glutSetMenu(menu);

}

void createGLUTMenus() {

menu = glutCreateMenu(processMenuEvents);

glutAddMenuEntry("Red",RED);

glutAddMenuEntry("Green",GREEN);

glutAddMenuEntry("Blue",BLUE);

glutAddMenuEntry("White",WHITE);

glutAttachMenu(GLUT_RIGHT_BUTTON);

}

Note that we changed the menu in the keyboard callback function as opposed to the menu callback function. This is because we shouldn't do any changes to a menu while it is in use. A menu is in use until the callback is over, so we couldn't change the menu's structure inside the menu's own callback. If you want to try this you can download the Visual C project here (glut81.zip).

As mentioned before, when a menu is in use it can't, or at least it shouldn't, be altered. In order to prevent messing up we must make sure if a menu is not in use before we change the menu entries. GLUT allows us to register a callback function that will ba called whenever a menu pops-up, and when it goes away. The function to register the callback is glutMenuStatusFunc.

void glutMenuStatusFunc(void (*func)(int status, int x, int y);
Parameters:

func - the name of the callback function

This function can be called in our main function, so we'll just add it there. As seen by the signature of glutMenuStatusFunc the callback function must take three parameters. These are:
· status - one of GLUT_MENU_IN_USE or GLUT_MENU_NOT_IN_USE
· x - The left coordinate of the menu relative to the window client area.
· y - The top coordinate of the menu relative to the window client area.
Bellow an example function is presented where a flag is set when the menu is in use.

void processMenuStatus(int status, int x, int y) {

if (status == GLUT_MENU_IN_USE)

flag = 1;

else

flag = 0;

}

We can now use this flag when processing keyboard events

void processKeys(unsigned char c, int x, int y) {

if (!flag) {

int num = glutGet(GLUT_MENU_NUM_ITEMS);

switch (c) {

case 'a':

glutChangeToMenuEntry(1,"Blue",BLUE);

glutChangeToMenuEntry(3,"Red",RED);

break;

case 'b':

glutChangeToMenuEntry(3,"Blue",BLUE);

glutChangeToMenuEntry(1,"Red",RED);

break;

case 'c':

if (num > 3)

glutRemoveMenuItem(num);

break;

case 'd': if (num == 3)

glutAddMenuEntry("White",WHITE);

break;

}

}

}

The source for this version can be found here (glut9.zip).

Swapping Menus

GLUT even allows us to change an entire menu in the middle of our application. Two functions are provided: glutSetMenu and glutGetMenu. The syntax for the former is:

void glutSetMenu(int menu);
Parameters:

menu - the index of a previously created menu

This function allows us to swap a menu, for instance if there is a change in the context of the application.

The syntax for glutGetMenu is as follows:

int glutGetMenu(void);

This function returns the index of the current menu. Next we present an example where we use two menus that are swapped when the user presses F1.

void processSpecialKeys(int c, int x, int y) {

if (!flag) {

if (c == GLUT_KEY_F1) {

int x = glutGetMenu();

if (x == menu1)

glutSetMenu(menu2);

else

glutSetMenu(menu1);

// don't forget to attach the menu!!!

glutAttachMenu(GLUT_RIGHT_BUTTON);

}

}

}

void createGLUTMenus() {

menu2 = glutCreateMenu(processMenuEvents);

glutAddMenuEntry("Blue",BLUE);

glutAddMenuEntry("Green",GREEN);

glutAddMenuEntry("Red",RED);

menu1 = glutCreateMenu(processMenuEvents);

glutAddMenuEntry("Red",RED);

glutAddMenuEntry("Green",GREEN);

glutAddMenuEntry("Blue",BLUE);

glutAttachMenu(GLUT_RIGHT_BUTTON);

}

The source for this version, as well as the Visual C Project can be found in here (glut10.zip),

Bitmap Fonts

A bitmap font is basically a 2D font. Although we'll place it in a 3D world, these fonts will have no thickness and can't be rotated or scaled, only translated. Furthermore, the font will always face the viewer, like a billboard. Although this can be seen as a potential disadvantage, on the other hand we won't have to worry about orienting the font to face the viewer

In this section we'll present the GLUT functions to put some bitmapped text on the screen. Basically, you just need one function: glutBitmapCharacter. The syntax is as follows:

void glutBitMapCharacter(void *font, int character)
Parameters:

font - the name of the font to use (see bellow for a list of what's available

character - what to render, a letter, symbol, number, etc...

The font options available are:
· GLUT_BITMAP_8_BY_13
· GLUT_BITMAP_9_BY_15
· GLUT_BITMAP_TIMES_ROMAN_10
· GLUT_BITMAP_TIMES_ROMAN_24
· GLUT_BITMAP_HELVETICA_10
· GLUT_BITMAP_HELVETICA_12
· GLUT_BITMAP_HELVETICA_18
Some of the font names are recognizable so you'll probably know what to expect, nevertheless you'll have the opportunity of trying all fonts in the example application via a pop-up menu.

The following line of text exemplifies a call to the glutBitmapCharacter function to output a single character at the current raster position:

glutBitmapCharacter(GLUT_HELVETICA_18,'3');

One important thing to know is what is the actual raster position. The raster position can be set with the family of functions glRasterPos from the OpenGL library, the syntax of two functions from this family is presented below.

void glRasterPos2f(float x, float y);
void glRasterPos3f(float x, float y, float z);
Parameters:

x, y, z - local coordinates for the text to appear

The function glutBitmapCharacter renders the character at the required position and advances the current raster position by the width of the character. Therefore, to render a string, successive calls to glutBitmapCharacter will suffice to achieve the desired output. The following function renders a string starting at the specified raster position:

void renderBitmapString(

float x,

float y,

float z,

void *font,

char *string) {

 char *c;

 glRasterPos3f(x, y,z);

 for (c=string; *c != '\0'; c++) {

 glutBitmapCharacter(font, *c);

 }

}

A Visual C project can be found here. This project shares the skeleton with the one found in the section Moving Around the World II" the only significant difference being in the rendering function where calls to renderBitMapString are made. A GLUT pop-up menu is provided for font selection.

Bitmap Fonts and Orthogonal Projections

A common usage for bitmap fonts, since they are only 2D is to present information to the user. For instance, one simple example is when we want to display the number of frames per second of an application. This information should stay in the same position on the screen even when the user moves the camera around. Furthermore, it is easier to compute these positions when using a 2D orthogonal projection, instead of a perspective projection because we can specify the position in pixels.

The basic scheme of things to do is to draw the world as we used to, with a perspective projection, and afterwards switch to the orthographic projection and draw the text. After this last step we should restore the original perspective so that the next frame is rendered correctly.

Next we present a template of a rendering function to achieve this effect:

void renderScene() {

// do everything we need to render the world as usual

setOrthographicProjection();

glPushMatrix();

glLoadIdentity();

renderBitmapString(5,30,GLUT_HELVETICA_18,"3D Tech");

glPopMatrix();

resetPerpectiveProjection();

glutSwapBuffers();

}

The two new functions above, setOrthograpicProjection and resetPerpectiveProjection are now presented. The first function starts by changing the matrix mode to GL_PROJECTION, meaning that we're working on the camera. Afterwards we save the previous settings, which in this case refer to the perspective projection defined elsewhere. We then reset the matrix with glLoadIdentity(), and define an orthographic projection using gluOrtho.

The arguments for this function indicate the range for both the x and y axis. The transformations afterwards flip the y axis, i.e. positive is downward, and translate the origin to the upper left corner. This makes it easier to write text in screen coordinates.

The variables w and h we're computed elsewhere (see the changeSize function in the source code).

void setOrthographicProjection() {

// switch to projection mode

glMatrixMode(GL_PROJECTION);

// save previous matrix which contains the

//settings for the perspective projection

glPushMatrix();

// reset matrix

glLoadIdentity();

// set a 2D orthographic projection

gluOrtho2D(0, w, 0, h);

// invert the y axis, down is positive

glScalef(1, -1, 1);

// mover the origin from the bottom left corner

// to the upper left corner

glTranslatef(0, -h, 0);

glMatrixMode(GL_MODELVIEW);

}

This function is very simple. Since we saved the settings of the perspective projection before we set the orthographic projection, all we have to do is to change the matrix mode to GL_PROJECTION, pop the matrix, i.e. restore the settings, and finally change the matrix mode again to GL_MODELVIEW.

void resetPerspectiveProjection() {

glMatrixMode(GL_PROJECTION);

glPopMatrix();

glMatrixMode(GL_MODELVIEW);

}

The function above will write the characters continuously, without extra spacing, except where a space character appears in the text. In order to add extra spacing we must keep track of where the current raster position is so that we can add the extra spacing to the x coordinate, for example. There are at least two different approaches to keep track of the raster position; one is to compute the current raster position after drawing a bitmap. The second option involves asking the OpenGL state machine what is the current raster position.

The first approach requires that we know the dimensions of the character. While the maximum height is always constant for a particular font, the width may vary in some fonts. Fortunately GLUT provides a function that returns the width of a character. The function is glutBitmapWidth and the syntax is as follows:

int glutBitmapWidth(void *font, int character);
Parameters:

font - one of the pre defined fonts in GLUT, see the previous section for the possible values.

character - the character which we want to know the width

So for instance if we want a function that writes a string with a certain amount of pixels between each character we can write:

void renderSpacedBitmapString(

float x,

float y,

int spacing,

void *font,

char *string) {

 char *c;

 int x1=x;

 for (c=string; *c != '\0'; c++) {

glRasterPos2f(x1,y);

glutBitmapCharacter(font, *c);

x1 = x1 + glutBitmapWidth(font,*c) + spacing;

 }

}

Similarly, if we want to draw vertical text we can do as follows:

void renderVerticalBitmapString(

float x,

float y,

int bitmapHeight,

void *font,

char *string)

{

 char *c;

 int i;

 for (c=string,i=0; *c != '\0'; i++,c++) {

glRasterPos2f(x, y+bitmapHeight*i);

 glutBitmapCharacter(font, *c);

 }

}

The variable bitmapHeight can be easily computed because we know the maximum height of each font (see the source code).

One last thing, GLUT has yet another function for bitmap fonts, its glutBitMapLength and it computes the length in pixels of a string. The return value of this function is the sum of the widths for every character in the string. Here goes the syntax:

int glutBitmapLength(void *font, char *string);
Parameters:

font - one of the pre defined fonts in GLUT, see the previous section for the possible values.

string - the string which we want to know the length in pixels

The example for this function illustrates how to put to use the concepts presented above.

Stroke Fonts

A stroke font is a 3D font. As opposed to bitmap fonts these can be rotated, scaled, and translated.

In this section we'll present the GLUT functions to put some stroke text on the screen. Basically, you just need one function: glutStrokeCharacter. The syntax is as follows:

void glutStrokeCharacter(void *font, int character)
Parameters:

font - the name of the font to use (see bellow for a list of what's available

character - what to render, a letter, symbol, number, etc...

The font options available are:
· GLUT_STROKE_ROMAN

· GLUT_STROKE_MONO_ROMAN (fixed width font: 104.76 units wide).

The following line of text exemplifies a call to the glutStrokeCharacter function to output a single character at the current local coordinates:

glutStrokeCharacter(GLUT_HELVETICA_18,'3');

As opposed to bitmap fonts the render location for stroke fonts is specified in the same way as for any graphical primitive, i.e. using translations, rotations and scales. The following function renders a string starting at the specified position in local world coordinates:

void renderBitmapString(

float x,

float y,

float z,

void *font,

char *string) {

 char *c;

 glPushMatrix();

 glTranslatef(x, y,z);

 for (c=string; *c != '\0'; c++) {

 glutStrokeCharacter(font, *c);

 }

 glPopMatrix();

}

Note: GLUT uses lines to draw stroke fonts, therefore we can specify the width of the line with the function glLineWidth. This function takes a float specifying the width as the only parameter. A Visual C project can be found here. A GLUT pop-up menu is provided for font selection.

As for bitmap fonts, GLUT provides a function that returns the width of a character. The function is glutStrokeWidth and the syntax is as follows:

int glutStrokeWidth(void *font, int character);
Parameters:

font - one of the pre defined fonts in GLUT, see above.

character - the character which we want to know the width

Computing Frames per Second

How fast is your application really going? Sometimes we make small changes and we can't be sure of the effect they had on the performance, namely how do they affect the number of displayed frames per second. In this section we'll see how we can use GLUT to count the number of frames per second. Note that this shouldn't be considered a true benchmark, just a guide value.

GLUT provides a function that allows us to query many features of the system, one of them being the number of miliseconds from the call to glutInit. The function is glutGet and the syntax is as follows:

int glutGet(GLenum state);

Parameters:

state - specifies the value we want.

This function can be use for a lot of purposes, for instance getting window coordinates or getting an openGL buffer depth. In this section we'll use it to get the number of miliseconds since the call to glutInit, i.e. the argument state is GLUT_ELAPSED_TIME.

int time;

time = glutGet(GLUT_ELAPSED_TIME);

Ok, now we're going to use this function to compute the number of frames per second of our application. The frame rate varies from frame to frame, i.e. not all frames take the same time to render because our application is not alone. The operating system takes its toll, and the camera maybe moving thereby changing whats being rendered. Therefore we're going to avoid computing the frame rate in each and every frame, and instead we're going to compute it roughly once per second.

We're going to declare three variables: frame, time, and timebase, where timebase and frame are both initialized to zero.

int frame=0,time,timebase=0;

The meaning of these variables is:
· frame - the number of frames since we last computed the frame rate
· time - the current number of miliseconds
· timebase - the number of miliseconds since we last computed the frame rate
The following piece of code, when placed inside the registered idle function, will do the job (see bellow for a detailed description):

...

frame++;

time=glutGet(GLUT_ELAPSED_TIME);

if (time - timebase > 1000) {

fps = frame*1000.0/(time-timebase));

timebase = time;

frame = 0;

}

...

We start by increasing the number of frames, i.e. increasing the variable frame. We then get the current time into time. Next we compare it with timebase to check if a second has elapsed, i.e. if the diference between time and timebase is greater than 1000 miliseconds. If this is not the case then we skip the computation part. However when the diference is larger than one second we'll do the computation.

Computing the difference between time and timebase gives us the number of miliseconds elapsed since we last computed the number of frames per second. dividing 1000 by the number of miliseconds elapsed provides the number of seconds elapsed. All its left is to multiply this value by the number of frames rendered since the last time the frame rate was computed, and we get the number of frames per second. Finally we reset timebase to the current number of miliseconds, and frame to zero.

Note that when the application starts timebase is zero, you'll have to wait one second to get the first value. This first value however is very misleading because it includes the time required to initialize the window. If you run some tests you'll see that this value is much lower than the actual frame rate.

If you want to print the number of frames per second you can use the following piece of code

...

frame++;

time=glutGet(GLUT_ELAPSED_TIME);

if (time - timebase > 1000) {

sprintf(s,"FPS:%4.2f",

frame*1000.0/(time-timebase));

timebase = time;

frame = 0;

}

glColor3f(0.0f,1.0f,1.0f);

glPushMatrix();

glLoadIdentity();

setOrthographicProjection();

renderBitmapString(30,35,(void *)font,s);

glPopMatrix();

resetPerspectiveProjection();

...

Note: the functions that appear mentioned in the above code snippet, we're introduced in section Bitmaps and Ortho View. A working example is available here.That's all folks!

Game Glut

According to the man pages for the GLUT distribution the GLUT game mode is designed to enable high-performance full screen rendering. However there is always a catch: some GLUT functionality, such as pop-up menus and subwindows, is disabled to increase performance. In this section an introduction to GLUT's gamemode is provided. My source of information for this tutorial were available examples, the man pages, and GLUT's source font. Since I found no official documentation, nor another tutorial covering the subject I do not guarantee that everything in here is 100% correct. I did build a set of working demos that provided me with some insight on how the game mode works, but due to limited testing on different hardware configurations there may be some imprecise or incorrect statements in here. If you run into problems when applying the concepts in this tutorial please give me a description of the problem so that I can look into it. If you're already familiar with GLUT's game mode and find something in here which is not right I would appreciate an e-mail (my e-mail is at the bottom of this page) so that I can fix the problem.

OK, now that I have done my little "disclaimer", we might as well start this tutorial. The first thing we have to do is to define the settings for the game mode, i.e. full screen. These settings may include the screen resolution, the pixel depth and the refresh frequency. To put it in other words, we can set whatever resolution we want (within the limits imposed by the hardware), i.e. we are not limited t set the full screen mode at the current resolution.

These settings for full screen mode are specified on a string. The format is as follows

"WxH:Bpp@Rr"
Parameters:

W - the screen width in pixels

H - the screen height in pixels

Bpp - the number of bits per pixel

Rr - the vertical refresh rate in hertz

Before we go any further, note that these settings are only a request to the hardware. If the specified mode is unavailable then the settings are ignored.

Examples:
· "800x600:32@100" - screen size 800x600; true color (32 bits); 100Hz vertical
· "640x480:16@75" - screen size 640x480; high color (16 bits); 75 hertz
Specifying all the components is a little bit stressfull. Although we usually have a clear idea of the screen resolution, and sometimes we may require a particular depth, the refresh rate is trickier to specify. Fortunately we don't have to specify everything. We can leave some bits out and let GLUT fill out the blanks. The following template strings for specifying the desired full screen settings are allowed:
· "WxH"
· "WxH:Bpp"
· "WxH@Rr"
· "WxH:Bpp@Rr"
· "@Rr"
· ":Bpp"
· "Bpp:@Rr"
Basically GLUT can handle all combinations as long as the order between them is preserved. So for instance specifying the refresh rate before the number of bits per pixel is not allowed.

Suppose that we wanted to set the screen resolution but didn't care about the pixel depth or refresh rate, then we can write something like

"800x600"

If on the other hand we wanted just to set the full screen mode at the current resolution but with a pixel depth of 32 bits, we could write

":32"

Similarly we can change only the refresh rate as in the following example:

"@100"

These few examples do not show the full capabilities of the full screen settings string. We can use any of the string templates provided above.

Ready to move on? OK. First we must provide GLUT with the requested settings for the full screen mode. The GLUT's function to set the game mode is glutGameModeString. The syntax is as follows:

void glutGameModeString(const char *string);
Parameters:

string - a string containing the desired settings as specified above

GLUT does validate the argument of glutGameModeString. Although the function doesn't return an error code, we can check if the mode specified is OK. GLUT provides a function that, amongst other possibilities, allows us to check if the specified mode is valid. The syntax of the function is:

int glutGameModeGet(GLenum info);
Parameters:

info - the requested information

In order to check if the supplied mode is valid, info takes the value of a GLUTs pre defined constant: GLUT_GAME_MODE_POSSIBLE. In this case, the return value indicates if the mode specified is possible, a non-zero value means OK. However note that in GLUTs man pages there is a warning stating that even if the mode is possible there is no guarantee that the screen settings will be successfully updated.

Assuming that we got a non-zero value as a return value then we can enter, or at least attempt to enter, the game mode with glutEnterGameMode. This function actually sets the screen to the requested settings if they are valid. The syntax is as follows:

void glutEnterGameMode(void);

The main function to initialize a GLUT application in game mode at 800 by 600 could be something like this:

int main(int argc, char **argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);

/*
glutInitWindowPosition(100,100);

glutInitWindowSize(640,360);

glutCreateWindow("SnowMen from 3D-Tech");

*/

// setting the game mode replaces the above

// calls to set the window size and position.

glutGameModeString("800x600:32");

// enter full screen

if (glutGameModeGet(GLUT_GAME_MODE_POSSIBLE))

glutEnterGameMode();

else {

printf("The select mode is not available\n");

exit(1);

}

// register all callbacks and

// create display lists

init();

glutMainLoop();

return(0);

}

The function init should register all the necessary callbacks as well as perform the openGL required initializations, for instance we could write something like this:

void init() {

glutIgnoreKeyRepeat(1);

glutKeyboardFunc(processNormalKeys);

glutSpecialFunc(pressKey);

glutSpecialUpFunc(releaseKey);

glutDisplayFunc(renderScene);

glutIdleFunc(renderScene);

glutReshapeFunc(changeSize);

initScene();

}

It may be the case that we want to be able to switch between game mode and window mode during the application. The following piece of code assumes that we're starting in window mode. The user can then press F1 to switch to game mode. F6 brings the user back to window mode. In this case the main function must define the window properties, register the callbacks, and enter the main loop.

Before we look at the code here goes the function that tells glut to leave game mode.

void glutLeaveGameMode(void);

The function that will process the special keys is the one that will perform the mode switch. The following function performs the required operations:

void pressKey(int key, int x, int y) {

switch (key) {

...

case GLUT_KEY_F1:

// define resolution, color depth

glutGameModeString("640x480:32");

// enter full screen

if (glutGameModeGet(GLUT_GAME_MODE_POSSIBLE)) {

glutEnterGameMode();

// register callbacks again

init();

}

break;

case GLUT_KEY_F6:

// return to default window

glutLeaveGameMode();

break;

}

}

There is a detail which is very important in the function above, when we enter the game mode with glutEnterGameMode we must register the callbacks again, and redefine the OpenGL context. The game mode is just like a new window, with a different OpenGL and GLUT context. This implies that the callbacks for the window mode will have no effect in game mode. In order to use callback functions we must register them again. Furthermore, the OpenGL context needs to be defined again. For instance display lists created for the window mode need to be defined again when entering the game mode.

GLUT is an excellent API, and as such it also gives the programmer ways to query the current state of affairs. GLUT has a special function for querying the state settings for the game mode, glutGameModeGet. The syntax for this function was already introduced above. Then we mentioned that one possible value for the argument was GLUT_GAME_MODE_POSSIBLE. It is time to see what the other possible arguments are.

There are several possibilities for the argument of glutGameModeGet that cover all the needs for correct game mode programming. The return values for each case are presented bellow:
· GLUT_GAME_MODE_ACTIVE - If the app is running in game mode then glutGameModeGet will return a non-zero value, if in window mode it will return zero.
· GLUT_GAME_MODE_POSSIBLE - As mentioned before this can be used to test the string which specifies the game mode setings. It is good policy to call glutGameModeGet with this value before entering game mode.
· GLUT_GAME_MODE_DISPLAY_CHANGED - As mentioned before when entering the game mode there is no guarantee that the display mode is indeed changed. This value can be used to test if the game mode was really entered. If we were previously already in game mode then this value can be used to test if the settings were changed.
· GLUT_GAME_MODE_WIDTH - returns the width of the screen
· GLUT_GAME_MODE_HEIGHT - This is the same as GLUT_GAME_MODE_HEIGHT but this time relative to the height.
· GLUT_GAME_MODE_PIXEL_DEPTH - returns the bits per pixel of the current mode.
· GLUT_GAME_MODE_REFRESH - the actual refresh rate in hertz.
The last four options are meaningful only if we are in game mode. These options will cause glutGameModeGet to return -1 if the string specifying the game mode settings is not valid, even if we are already in game mode. So for instance if we're runnig an app in game mode at 640 by 480 and requested a change to 1600 by 1200, and the mode is not valid for the actual hardware configuration, then GLUT does not change the resolution and the game mode stays at 640 by 480. However when asking for the current height we'll get -1 and not 480, although the actual height is 480.

The following code excert exemplifies the usage of glutGameModeGet.

if (glutGameModeGet(GLUT_GAME_MODE_ACTIVE) == 0)

sprintf(currentMode,"Current Mode: Window");

else

sprintf(currentMode,

"Current Mode: Game Mode %dx%d at %d hertz, %d bpp",

glutGameModeGet(GLUT_GAME_MODE_WIDTH),

glutGameModeGet(GLUT_GAME_MODE_HEIGHT),

glutGameModeGet(GLUT_GAME_MODE_REFRESH_RATE),

glutGameModeGet(GLUT_GAME_MODE_PIXEL_DEPTH));

}

This is it. Check out the VC project for an app with source code which uses game mode.

Creating and Destroying Subwindows

With GLUT we can define subwindows, i.e. divide the main window in different regions, each with its own OpenGL context and callbacks. In order to create a subwindow we use the function glutCreateSubWindow with the following syntax:

int glutCreateSubWindow(int parentWindow, int x, int y, int width, int height);
Parameters:

parentwindow - the id of the parent window.

x, y - the top left corner of the subwindow, relative to the parent window's origin.

width, height - the size of the sub window

The id of the parent window is the return value obtained when creating the parent window. The following code creates the main window and a subwindow:

mainWindow = glutCreateWindow("SnowMen from 3D-Tech");

...

subWindow1 = glutCreateSubWindow(mainWindow, 10,10,100,100);

A subwindow can also be a parent window for another subwindow. According to GLUTs spec subwindows can be nested arbitrarily.

As mentioned before a subwindow has its own OpenGL context, so for instance if we're using display lists we'll need to create them for every window and subwindow where we want to render them. The same applies to most of the callback functions.

At the very least we must register the display function for each window we create using glutDisplayFunc. For each window, we must also register callbacks for cursor changes and mouse event handling, if we want to use these features. Pop-up menus are also assigned to a particular window. Note however that there is only one idle function.

The following code is a more complete version of the initialization required:

int mainWindow, subWindow1,subWindow2,subWindow3;

...

int main(int argc, char **argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(w,h);

mainWindow = glutCreateWindow("SnowMen from 3D-Tech");

//keyboard stuff

glutIgnoreKeyRepeat(1);

glutKeyboardFunc(processNormalKeys);

glutSpecialFunc(pressKey);

glutSpecialUpFunc(releaseKey);

// reshape function

glutReshapeFunc(changeSize);

// display and idle function

glutDisplayFunc(renderScene);

glutIdleFunc(renderSceneAll);

// this is where we create the OpenGL context

initScene();

subWindow1 = glutCreateSubWindow(mainWindow,

border,border,

w-2*border, h/2 - border*3/2);

// we're required to register a display func for

// each window

glutDisplayFunc(renderScene1);

// we need to create the OpenGL context again

initScene();

subWindow2 = glutCreateSubWindow(mainWindow,

border,(h+border)/2,

w/2-border*3/2, h/2 - border*3/2);

// we're required to register a display func for

// each window

glutDisplayFunc(renderScene2);

// we need to create the OpenGL context again

initScene();

subWindow1 = glutCreateSubWindow(mainWindow,

(w+border)/2,(h+border)/2,

w/2-border*3/2,h/2 - border*3/2);

// we're required to register a display func for

// each window

glutDisplayFunc(renderScene3);

// we need to create the OpenGL context again

initScene();

glutMainLoop();

return(0);

}

The above code creates three subwindows. Each subwindow is used to represent a different viewpoint of the same scene. The top subwindow represents the free moving camera, the botton left the view from the top, and the bottom right the view from the right. The layout is as in the following figure.

[image: image1.png]
When a window is created, either the main window or a subwindow, it becomes the current window. All callbacks registered then are relative to the current window, except the idle function, that as mentioned before is unique for the whole application.

Therefore in the above application the keyboard callbacks are being registered only for the main window. During my experiments in Windows I've noticed that if the keyboard callbacks are not registered in the main window then we loose the keyboard. Any Linux, SGI or Mac users out there with different experiences?

Note that we did call initScene for all the subwindows to initialize the OpenGL context for the subwindow. Also note that we only register the reshape func once, this is because we'll resize all the windows with a single function. We could however define a reshape function for each subwindow.

Once more it is important to stress that registering a callback for the display function is required for each window we create. Do not mistake this function with the idle function. See the section on animation if you're unfamiliar with the difference between these two functions.

A subwindow can be destroyed when no longer needed. In order to do that, we can use the function glutDestroyWindow.

void glutDestroyWindow(int windowIdentifier)
Parameters:

windowIdentifier - the value returned when creating the window

This function destroys the window, any subwindows it contains, and all OpenGL contexts for the destroyed windows.

Reshaping Subwindows

The callback for the reshape function needs to do two things: it resizes the subwindows, and recomputes the projection matrices for each subwindow. In our case we're not rendering any geometry in the main window, so we'll skip recomputing the projection matrix for the main window.

First let's introduce the functions to resize, and reposition the subwindows.

void glutPositionWindow(int x, int y); void glutReshapeWindow(int width, int height);
Parameters:

x,y - the top left corner of the window

width, height - the dimensions of the window in pixels

These two function are relative to the current window so first we must set a particular window as being the current window. In order to do this we need to have the window identifier at hand and call glutSetWindow. The syntax is as follows:

void glutSetWindow(int windowIdentifier);
Parameters:

windowIdentifier - the value returned when the window is created.

So before we do any calls to position and resize the window we must set each subwindow as the current window. The following piece of code provides the reshape function, in our case the function is called changeSize. As mentioned in the previous section we have defined a callback for reshaping the window only for the main window. This is enough because by default the user can only resize the main window.

If we need to know which window is the current window we can use GLUTs function glutGetWindow.

int glutGetWindow();
Parameters:

The return value of this function is the identifier of the current window. Now lets get back to the reshape function:

int w,h, border=6;

...

void changeSize(int w1,int h1) {

if(h1 == 0)

h1 = 1;

//we're keeping these values for later

w = w1;

h = h1;

//set subwindow1 as the current window

glutSetWindow(subWindow1);

//resize and reposition the current window

glutPositionWindow(border,border);

glutReshapeWindow(w-2*border, h/2 - border*3/2);

// set the projection matrix for the current window

changeSize2(w-2*border, h/2 - border*3/2);

//set subwindow2 as the current window

glutSetWindow(subWindow2);

//resize and reposition the current window

glutPositionWindow(border,(h+border)/2);

glutReshapeWindow(w/2-border*3/2, h/2 - border*3/2);

// set the projection matrix for the current window

// note that the parameters must match the

// width and height of the current window

changeSize2(w/2-border*3/2,h/2 - border*3/2);

//set subwindow3 as the current window

glutSetWindow(subWindow3);

//resize and reposition the current window

glutPositionWindow((w+border)/2,(h+border)/2);

glutReshapeWindow(w/2-border*3/2,h/2 - border*3/2);

// set the projection matrix for the current window

changeSize2(w/2-border*3/2,h/2 - border*3/2);

}

All its left to do is to define changeSize2, which will recompute the projection matrix. Since we have already set the current window as being one of the subwindows, and we're calling this function with the dimensions of the subwindow, this is just a normal reshape function.

void changeSize2(int w1, int h1)

{

// Prevent a divide by zero, when window is too short

// (you cant make a window of zero width).

ratio = 1.0f * w1 / h1;

// Reset the coordinate system before modifying

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

// Set the viewport to be the entire window

 glViewport(0, 0, w1, h1);

// Set the clipping volume

gluPerspective(45,ratio,0.1,1000);

glMatrixMode(GL_MODELVIEW);

}

Rendering to Multiple Subwindows

Before we start lets recall our callback definitions:
· idle function - renderSceneAll

· display func for main window - renderScene

· display func for subwindow 1 - renderScenesw1

· display func for subwindow 2 - renderScenesw2

· display func for subwindow 3 - renderScenesw3

We'll start by the display functions for each window. The main window is covered with subwindows so we only want to paint it black. Since we are working with multiple windows the first thing we must do is call glutSetWindow with the proper window id. Then we just clear the color buffer with the default color, black.

void renderScene() {

glutSetWindow(mainWindow);

glClear(GL_COLOR_BUFFER_BIT);

glutSwapBuffers();

}

We must define the display function for each subwindow. In our example, the geometry is the same for all windows, the only thing that differs is the viewpoint, or the camera, if you prefer.

The function where the geometry is rendered is called renderScene2. However before we call this function we must set the current window to be the respective subwindow, load the identity matrix to clean the MODELVIEW matrix, and set the camera with gluLookAt.

Some variables used in the following code require some description:
· x,y,z : our current position in the world
· lx,ly,lz : a vector specifying the line of sight
· deltaMove, deltaAngle, angle : define the camera movements.
As mentioned before in the initial section covering subwindows we have three subwindows with different perspectives of the same scene. The first subwindow displays the scene from the current point of view. The second displays the same scene from the top, i.e. as if the camera was above the current position looking downwards, and with the same orientation as the line of sigh. The third subwindow behaves like a camera to the right of the current position, and pointing at the current position.

The following code defines the display functions for every window. This code is an extended version of the previous versions. If you require more detail just explore the previous sections, namely Moving the Camera II for the keyboard movement, Bitmaps and the Orthogonal View for text display, or Frames per Second for the respective computation.

//main window

void renderScene() {

glutSetWindow(mainWindow);

glClear(GL_COLOR_BUFFER_BIT);

glutSwapBuffers();

}

//subwindow 1 - camera = current position

void renderScenesw1() {

glutSetWindow(subWindow1);

glLoadIdentity();

gluLookAt(x, y, z,

 x + lx,y + ly,z + lz,

 0.0f,1.0f,0.0f);

renderScene2(subWindow1);

}

// subwindow 2 - top view

void renderScenesw2() {

glutSetWindow(subWindow2);

glLoadIdentity();

gluLookAt(x, y+15, z,

 x ,y - 1,z,

 lx,0,lz);

renderScene2(subWindow2);

}

// subwindow 3 - right view

void renderScenesw3() {

glutSetWindow(subWindow3);

glLoadIdentity();

gluLookAt(x-lz*10 , y, z+lx*10,

 x ,y ,z ,

 0.0f,1.0f,0.0f);

renderScene2(subWindow3);

}

Now all its left to do is to define the global idle function. In our example, this function is renderSceneAll. This function checks if the variables deltaMove or deltaAngle are not zero, and updates the values of the current position, and the line of sight vector.

Afterwards we call the display functions for each of the subwindows. Note that we are not calling the display function for the main window because its contents never change.

void renderSceneAll() {

if (deltaMove)

moveMeFlat(deltaMove);

if (deltaAngle) {

angle += deltaAngle;

orientMe(angle);

}

renderScenesw1();

renderScenesw2();

renderScenesw3();

}

Thats it. Suggestions, bugs, or requests for more info are welcome. My e-mail is at the bottom of the page. Meanwhile the the source code and a VC project is available to download.
17
30

